
Digital Logic Circuits
Arithmetic Circuits

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Logic synthesis, NAND and NOR networks,
Don’t care conditions, XOR and XNOR gates,
seven-segment display, and multiplexers

2CS-173, © EPFL, Spring 2025

3

Previously

▪ Learned sum-of-products and product-of-sums
forms for logic synthesis
• From truth tables to logic circuits

▪ Discover techniques to convert an AND/OR/NOT logic
network to a NAND-only or NOR-only equivalent

▪ Discovered the don’t care conditions and saw how
using them wisely can help build efficient circuits

▪ Learned about XOR and XNOR gates

▪ Built multiplexers (MUX)

CS-173, © EPFL, Spring 2025

Let’s Talk About…
…Ways to build arithmetic circuits

4CS-173, © EPFL, Spring 2025

5

Learning Outcomes

▪ Build basic arithmetic circuits for
integer addition and subtraction
• one-bit addition

• one-bit subtraction

• n-bit addition and subtraction in two’s complement

▪ Find the worst-case circuit delay (i.e., the critical path delay)

▪ Build faster adders; reason about the advantages and disadvantages

▪ Use multiplexers for shifting efficiently

CS-173, © EPFL, Spring 2025

Quick Outline

▪ Adders
• Half-adder

• Full-adder

• Ripple-carry adder

▪ Subtractors
• Full-subtractor

• Ripple-carry subtractor

▪ Adders-Subtractors
• Ripple-carry adder-subtractor

6CS-173, © EPFL, Spring 2025

▪ Fast adders
• Delay as performance metric

• Full-adder

• Full adder-subtractor

• Ripple-carry adder-subtractor

• Carry-select adder

▪ Shifters
• Barrel shifter

• Right

• Bidirectional

Adders
• Half-adder

• Full-adder

• Ripple-carry adder

7CS-173, © EPFL, Spring 2025

8

Addition of Two 1-Bit Binary Numbers

▪ Let us start from the simplest binary addition of one-bit numbers
• The resulting sum is at most on two bits:

• the rightmost bit is called sum (s)

• the leftmost bit is called carry (c); it is produced as a carry-out when both bits
being added are logical one

▪ Corresponding circuit is called half-adder (HA)

CS-173, © EPFL, Spring 2025

1-bit
carry

1-bit
sum

1-bit
carry

1-bit
sum

1-bit
carry

1-bit
sum

1-bit
carry

1-bit
sum

1-bit
carry

1-bit
sum

Half-Adder
Addition of Two 1-Bit Binary Numbers without the Input Carry

▪ Truth table

▪ Logical expressions

▪ Digital logic circuit

▪ Graphical symbol

9CS-173, © EPFL, Spring 2025

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

sum carry

HA

10

Addition of Two N-Bit Binary Numbers

▪ A binary -bit adder has two operands and
a carry-in as inputs, and produces as outputs
• sum and

• carry-out such that

▪ The solution to the above equation:

CS-173, © EPFL, Spring 2025

11

Addition of Two N-Bit Binary Numbers

▪ It is impractical to start from the truth tables for -bit addition

▪ Iterative approach:
• Add each pair of bits at the position

• The addition at the bit position needs to include a carry-in
at the position (i.e., carry-out from the position);
it also generates a carry-in for the position

▪ The 1-bit adder reduces to a primitive module called full-adder (FA)
with three binary inputs and two binary outputs such that

CS-173, © EPFL, Spring 2025

Full-Adder
Addition of Two 1-Bit Binary Numbers with the Input Carry (i.e., three 1-bit numbers)

▪ Truth table

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

12CS-173, © EPFL, Spring 2025

▪ Logical expressions

▪ Further optimized:

E
X

A
M

P
L

E
S

13

Full-Adder From Half-Adders
Modular Implementation

▪ Recall half-adder

CS-173, © EPFL, Spring 2025

▪ Full-adder

HA

HA

HA

Full-Adder
Graphical Symbol

▪ Final logical expressions

▪ Graphical symbol
• Easy chaining

▪ Digital logic circuit

14CS-173, © EPFL, Spring 2025

FA

15

Basic Ripple-Carry Adder (RCA)
Adding Two N-bit Binary Numbers

▪ Starting from the least-significant digit,
we add pairs of digits, progressing to
the most-significant digit

▪ Carry “ripples” through the adder stages

CS-173, © EPFL, Spring 2025

FAFA FA

CS-173, © EPFL, Spring 2025 16

Subtractors
Arithmetic circuits

17CS-173, © EPFL, Spring 2025

18

Subtraction of Two 1-Bit Binary Numbers

▪ Recall binary subtraction of two 1-bit binary numbers
• Subtraction generates two bits:

• difference (d), the result of the subtraction,

• borrow (b), produced as a borrow-out when the subtrahend is larger than minuend

CS-173, © EPFL, Spring 2025

1-bit
borrow

1-bit
difference

1-bit
difference

1-bit
difference

1-bit
difference

1-bit
difference

1-bit
borrow

1-bit
borrow

1-bit
borrow

1-bit
borrow

19

Subtraction of Two N-Bit Unsigned Numbers

▪ It is impractical to start from the truth tables for -bit subtraction

▪ Iterative approach
• Subtract each pair of bits at the position

• The subtraction at the bit position needs to include a borrow-in at position
(i.e., borrow-out from the position); it also generates a borrow-in for position

CS-173, © EPFL, Spring 2025

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Full Subtractor
Subtraction of Two 1-Bit Binary Numbers Taking into Account the Input Borrow

▪ Graphical symbol
• Easy chaining

20CS-173, © EPFL, Spring 2025

▪ Truth table

FS

21

N-Bit Ripple-Carry Subtractor
Subtracting Two N-bit Binary Numbers

▪ Starting from the least-significant digit,
we subtract pairs of digits, progressing
to the most-significant digit

CS-173, © EPFL, Spring 2025

FSFSFS

Adders-Subtractors
…in Two’s complement

22CS-173, © EPFL, Spring 2025

23

Adders-Subtractors in Two’s Complement

▪ Recall that subtracting two numbers in two’s complement format
requires using the two’s complement of one operand:

▪ is obtained by complementing every bit of

▪ Assume a control signal determines which operation to
perform (addition, subtraction)

CS-173, © EPFL, Spring 2025

24

Adders-Subtractors in Two’s Complement

▪ Assume a control signal determines which operation to
perform (addition, subtraction)

CS-173, © EPFL, Spring 2025

25

N-Bit Ripple-Carry Adder-Subtractor
Two’s Complement

CS-173, © EPFL, Spring 2025

FAFAFA

▪ One circuit, able to perform two operations

CS-173, © EPFL, Spring 2025 26

Fast Adders
Carry Select vs. Ripple-Carry Adders

27CS-173, © EPFL, Spring 2025

Performance Matters

▪ Addition and subtraction are fundamental operations
performed frequently
• How quickly a result can be produced greatly impacts

the system’s performance

• Performance is determined by the worst-case delay

▪ System’s value is measured as a ratio:

▪ A large performance improvement can often
be achieved at a modest price/cost increase

28CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

29

Full-Adder
Input-to-Output Delay, Assuming All Inputs are Available at time t = 0

▪ Delay to generate the sum

▪ Delay to generate carry-out

▪ Worst-case delay

• If all gates had equal delays

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

30

Full Adder-Subtractor
Input-to-Output Delay, Assuming All Inputs are Available at time t = 0

▪ Delay to generate the sum

▪ Delay to generate carry-out

▪ Worst-case delay

• If all gates had equal delays:

CS-173, © EPFL, Spring 2025

31

Basic Ripple-Carry Adder-Subtractor

▪ What is the worst-case delay to find the sum/difference using
a basic ripple carry adder-subtractor?
• Assume the inputs , , and are available (no waiting to start)

• Assume all gates have the same delay

▪ Note: Worst-case delay is commonly referred to as critical path delay (CPD)

▪ A: gate delays

CS-173, © EPFL, Spring 2025

32

Basic Ripple-Carry Adder/Subtractor

▪ Solution:
• The worst-case delay is on

the path from the input to
the last carry-out output

CS-173, © EPFL, Spring 2025

If all gates have equal delays:

33

RCA Performance Issues

▪ With the increasing number of bits , the ripple-carry adder delay
increases, and the computation becomes prohibitively slow

▪ What can be done to make the adder faster?

▪ A variety of faster implementations exist
• Switched carry-ripple adder, carry-skip adder,

carry-lookahead adder, prefix-adder, conditional-sum adders, …

• All but the carry-select adder are out of scope for CS-173

CS-173, © EPFL, Spring 2025

34

Carry-Select Adder

▪ Idea: Cut the long carry propagation chain in half to save time

CS-173, © EPFL, Spring 2025

FAFAFA FA

35

Carry-Select Adder, Contd.

▪ How can we compute the carry-in for the second half?
• Compute twice: once for carry-in = 0, once for carry-in = 1

• Compute in parallel (double the gates) to save time

• Once carry-in is known, use it to select the corresponding sum and carry-out
CS-173, © EPFL, Spring 2025

36

Carry-Select Adder
Block Diagram

CS-173, © EPFL, Spring 2025

▪ Adders operating in parallel:
significant time savings at
additional gate cost of approx.
the size of one

CS-173, © EPFL, Spring 2025 37

Shifting
Barrel Shifters

38CS-173, © EPFL, Spring 2025

39

Barrel Shifter

▪ A barrel shifter is a combinational logic circuit with data inputs,
data outputs, and a set of control inputs that specify how to

shift the data between the input and the output

▪ A barrel shifter inside a processor can typically specify
• direction of shift (left, right)

• type of shift (logical, arithmetic, circular/rotation)

• amount of shift (typically 0 to bits)

▪ Implemented as a sequence of multiplexers (MUX), each shifting
their input by twice as many positions as the previous MUX

CS-173, © EPFL, Spring 2025

40

Shift Right
By Up to One Position

▪ Logical shift resets the leading bit of the output:

▪ Arithmetic (sign-preserving) shift:

▪ Truth table

CS-173, © EPFL, Spring 2025

0

1

41

Shift Right
By Up to Three Positions

CS-173, © EPFL, Spring 2025

0 0

0 1

1 0

1 1

▪ Truth table
• Select signals encode the number

of positions to shift by
(e.g., s1s0 = (10)2 shifts by two places)

42

Shift Right
By Up to Three Positions, Contd.

▪ Nothing new, just a somewhat more compact drawing

CS-173, © EPFL, Spring 2025

43

Shift Right
By Up to Seven Positions

CS-173, © EPFL, Spring 2025

▪ Three levels of multiplexing

Shift Right By Up to Seven Positions

44

Bidirectional Shifter
By Up to Seven Positions

CS-173, © EPFL, Spring 2025

45

Bidirectional Shifter
By Up to Seven Positions, Contd.

▪ Truth table (incomplete, only a few example cases are shown):

CS-173, © EPFL, Spring 2025

0 0 1 0

0 1 0 1

0 1 1 1

1 1 0 0

1 0 1 1

1 1 1 1

Swapped order Swapped order

Original order Original order

CS-173, © EPFL, Spring 2025 46

47

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 3: Number representation
and arithmetic circuits
▪ 3.2.1, 3.2.2, 3.3.3, 3.3.6

▪ Chapter 8: Combinational arithmetic elements
▪ 8.1.1-8.1.3
▪ 8.2

