Digital Logic Circuits

Arithmetic Circuits

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTAL Io Spring 2025

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS

Logic synthesis, NAND and NOR networks,
Don't care conditions, XOR and XNOR gates,
seven-segment display, and multiplexers

CS-173, © EPFL, Spring 2025

Previously

= _earned sum-of-products and product-of-sums
forms for logic synthesis
« From truth tables to logic circuits

= Discover technigues to convert an AND/OR/NOT logic
network to a NAND-only or NOR-only equivalent

» Discovered the don’t care conditions and saw how
using them wisely can help build efficient circuits

= |_earned about XOR and XNOR gates
= Built multiplexers (MUX)

)l

010103
oyl 9014,

o
QP nnnti,

2
g ’$,\,@} c'\’@) Q,
N S g S
o N &5
~) g Q
~y ~
N o5 5§
s I [P
= 8783
A s
R R
A Y
! S 2%
Let's Talk About 2 2%
o A SN % Q
) (}‘ ORI oS
oL Y. totorotot

..Ways to build arithmetic circuits N,
202* 0?0 Z\OO'UJ'UEV[n'm““QQ

% Oy 0org rgrorett
7 ‘
90rgrgrorot

CS-173, © EPFL, Spring 2025 4

Learning Outcomes A

= Build basic arithmetic circuits for e
integer addition and subtraction L
« One-bit addition
« One-bit subtraction
* N-pit addition and subtraction in two’'s complement

= Find the worst-case circuit delay (i.e., the critical path delay)
= Build faster adders; reason about the advantages and disadvantages
= Use multiplexers for shifting efficiently

Quick Outline

= Adders
« Half-adder
 Full-adder
 Ripple-carry adder

s Subtractors
« Full-subtractor
 Ripple-carry subtractor

= Adders-Subtractors
 Ripple-carry adder-subtractor

CS-173, © EPFL, Spring 2025

» Fast adders

 Delay as performance metric
 Full-adder
 Full adder-subtractor
« Ripple-carry adder-subtractor

 Carry-select adder

= Shifters

e Barrel shifter

« Right
» Bidirectional

ONQLBLDLUIDC

O
&
Q'\) @Q <>@m,m,n],m,oglq

Q Q '\9 0101010104,
~ QO 0'\‘00 0,30{

2

Adders
< (}0 %0 “0rgrprgrott®®

« Half-adder U
 Full-adder ?b? %0 0ty grgrets®

. orgrotot
. Ripple-carry adder 0??00 ,
TorgroTot

CS-173, © EPFL, Spring 2025 /

Addition of Two 1-Bit Binary Numbers

= | et us start from the simplest binary addition of one-bit numbers

« The resulting sum is at most on two bits:
« the rightmost bit is called sum (s)

« the leftmost bit is called carry (c); it is produced as a carry-out when both bits
being added are logical one

L 0 0 N 1 N 1
+ Y + 0 + 1 0 1
—>
C S 00 01 01 10
7NN 7N N NN N
1-bit 1-bit 1-bit 1-bit 1-bit 1-bit 1-bit 1-bit 1-bit 1-bit
carry sum carry sum carry sum carry sum carry sum

= Corresponding circuit is called half-adder (HA)

CS-173, © EPFL, Spring 2025

Half-Adder

Addition of Two 1-Bit Binary Numbers without the Input Carry

= Truth table
sum Carry
x Y S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
= |_ogical expressions

S=TY+rxy=xDYyY

c=xy

CS-173, © EPFL, Spring 2025

= Digital logic circuit
>
1

» Graphical symbol

S

xr —7 S

HA

Yy —— C

Addition of Two N-Bit Binary Numbers

= A binary n-bit adder has two operands 0 < z,y <2" —1 and
a carry-in ¢, € {0,1} as inputs, and produces as outputs
esum0<s<2" -1 and
e carry-out cour € {0, 1} such that
T+ Y+ cin=2"cout +5
= The solution to the above equation:
s=(r+y+cyp) mod 2™

1 if (x4+y+cip) =27
Cout =— .
g 0 otherwise

= [(z+y+cin)/2"]

Addition of Two N-Bit Binary Numbers

= [t is impractical to start from the truth tables for n -bit addition

= [terative approach:
 Add each pair of bits at the position 7,0 <17 < n . Citl G

« The addition at the bit position 2 needs to include a carry-in N 7
at the position ¢ (i.e., carry-out from the position 7 — 1);

it also generates a carry-in for the positions + 1 + e Y

S

= The 1-bit adder reduces to a primitive module called full-adder (FA)
with three binary inputs and two binary outputs such that

Ti +Yi + ¢ = 2¢i41 + 8

Full-Adder

Addition of Two 1-Bit Binary Numbers with the Input Carry (i.e., three 1-bit numbers)

= Truth table » |_ogical expressions
Ti Yi Ci | Si Cix Si =T3 Yi Ci T T Yi C; + T Yi C; + T4 Yi Ci
0 0 0|0 O = (@ Y+ TG+ (T v + 2)G
o o0 111 0 =(z; Dyi)ei + (x; Dy)& =2, Dy; Doy
1 1 _ _ _
8 : ? 0 ? Citl1 =Tj Yi C; +X; Yi C; T X5 Y CG T X5 Y; C
0 olal o = (T3 yi + 25 Yi)ci + 5 yi (G + ¢;)
= (2; D yi)ci + i Y
1T 0 10 1
o1 030 » Further optimized:
T 1 1171 1

Ci+1 = T3Y; + T;¢; + yic;

Full-Adder From Half-Adders -+

Modular Implementation §) |

» Recall half-adder » Full-adder

S=Ty+ry=xrPy Si = T; DY; Dy
” c=u1xy Civ1 = (T D yi)ci + i Yi
o
= ™ = = == o e o = o
: | | :
Ci : ! N
Fm======== 1! ! Z
T,—l |: |
: : HA |
it] :
' HA |
l l
. : :
l T
' I
=}
' |

CS-173, © EPFL, Spring 2025 e e e === .

Full-Adder

Graphical Symbol

= Final logical expressions = Digital logic circuit
Si =i DY; D¢ z;
Cit1 = TiYi + TiCi + YiCi ” =) s
¢ K S; =X DY; Dy

» Graphical symbol
« Fasy chaining x; v;

|

Cit1=— FA |=—¢;

|

CS-173, ® EPFL, Spring 2025 S; 14

Ci+1

Ci+1 = XY + xic; + y;c;

kHUkHU

Basic Ripple-Carry Adder (RCA)

Adding Two N-bit Binary Numbers

= Starting from the least-significant digit, v Citl ¢

we add pairs of digits, progressing to e X

the most-significant digit b e Y

= Carry “ripples” through the adder stages S
Ln—1Yn—1 1 Y1 Lo Yo

| L

CS-173, © EPFL, Spring 2025

15

CS-173, © EPFL, Spring 2025

16

g

S

Subtractors 3
< (}\0 ?0? “0rgrprgrott®®

Arithmetic circuits 2 O
@2 0?0? 0ty grgrets®

% 0 “or, rgrorott
??00 ‘
Torgrorot

CS-173, © EPFL, Spring 2025 1/

Subtraction of Two 1-Bit Binary Numbers

= Recall binary subtraction of two 1-bit binary numbers

« Subtraction generates two bits:
- difference (d), the result of the subtraction,
 borrow (b), produced as a borrow-out when the subtrahend is larger than minuend

1-bit
borrow

1-bit
difference

CS-173, © EPFL, Spring 2025

1-bit

borrow ™\

-

0

0
0
0

t
1-bit
difference

1-bit
borrow
1
0
1

1
t
1-bit
difference

1-bit
borrow ™\
0

1
— 0
1

t
1-bit
difference

1-bit
borrow M\
0
1
1
0

t
1-bit
difference

18

Subtraction of Two N-Bit Unsigned Numbers

= [t is impractical to start from the truth tables for n-bit subtraction

= [terative approach
« Subtract each pair of bits at the position 7,0 <i < n

« The subtraction at the bit position 2 needs to include a borrow-in at position i
(i.e., borrow-out from the position i — 1); it also generates a borrow-in for position ¢ 4 1

bi—l—l b%
L

di

Full Subtractor

Subtraction of Two 1-Bit Binary Numbers Taking into Account the Input Borrow

di =T; Yi bi + T yi bi + 2 Ui bi + i yi bi

= Truth table = (T Yi+xivi) bi + @ yi + 2 5i) bi = (v, D y;) by + (v Dys) by
=z, Dy; Db

:gi ybz lg c;@ bigl biv1 = T; Ui by +T5 yi by +T; ys by + x5 y; b

0o 0 111 1 (Tb. x+ax=x8h. x+z=1

0 1 ol 1 1 = (T; 77 bi + 7 ys b)) + (Tq ys by + 5 v by) + (Tq yi by + 5 ys by)
=7T; b +%; yi +vyi b;

0 1 1]0 1 zi Ui

17 0 01 0O .

0 110 o = Graphical symbol 1 l
 Easy chaining

RRIIN = 75 o

N-Bit Ripple-Carry Subtractor

Subtracting Two N-bit Binary Numbers

- bigr by
= Starting from the least-significant digit, e @
we subtract pairs of digits, progressing oy
to the most-significant digit M
Ln—1Yn—1 T yll Lo Yo
FS |— -— Fs |2 Fs [—b0=0
o T A T - S LT s LA 0=
dn—l dl dO 21

CS-173, © EPFL, Spring 2025

Q\’ Q,»g% 0@“301019100 0
4» ~
6\7 \)Q’» &9 @X‘m,ummgglo

I\7 ‘20‘
197 S? 6\7@; &’6\)& %
o ~N o F
N 2 .3.5
=05 35
S eced
= R =
— — g
A .S 803
f
Adders-Subtractors 2 2% %,
< o %20 “0rgrprgrott®®

..In Two's complement 2 O
\!
202* 0?0 “otgrgrorevs®

0?0 “orggrgrett
??00 ‘
ToTgroi0t

CS-173, © EPFL, Spring 2025 22

Adders-Subtractors in Two's Complement

= Recall that subtracting two numbers in two’'s complement format
requires using the two's complement of one operand:

X-Y=X+Y+1
= Y is obtained by complementing every bit of Y

» Assume a control signal op determines which operation to
perform (op = 0 : addition, op = 1 : subtraction)

Adders-Subtractors in Two's Complement

» Assume a control signal op determines which operation to
perform (op = 0 : addition, op = 1 : subtraction)

X +Y, if op =0
f(X,Y) = — .
X+Y +1, otherwise

f(X,Y,0op) =0p(X +Y) +op(X +Y +1)
f(X,Y,0p) = (op+ op) X +0pY +op Y + op

f(X,Y,0p) =X +0pY +o0pY +op
D

F(X,Y,0p) = X +0p &Y +op

N-Bit Ripple-Carry Adder-Subtractor

Two’s Complement

= One circuit, able to perform two operations
f(X,Y,0p) =X +op@®Y +op

op
Yn—1 1 Yo
<L \L_J, £ L

YT Y Ty

C
Cn=+— FA |=—c¢h_1 - co=— FA -L FA |=—op

| | |

Sn—1 S1 S0

CS-173, © EPFL, Spring 2025

26

Fast Adders %, (
(«2 Op 0p o8

- g <
Carry Select vs. Ripple-Carry Adders 2 O %2 s Otgrgrorott Q
P2 < 00T grpratt®

Oy 01y prott
TODTDTDTU'LDW

CS-173, © EPFL, Spring 2025 27

Performance Matters

= Addition and subtraction are fundamental operations
performed frequently

« How quickly a result can be produced greatly impacts
the system'’s performance

» Performance is determined by the worst-case delay

= System’s value is measured as a ratio:

performance
price

value =

= A large performance improvement can often
be achieved at a modest price/cost increase

CS-173, © EPFL, Spring 2025

28

(7]
w
—
o
=
<
>
]

Full-Adder

Input-to-Output Delay, Assuming All Inputs are Available at timet=0

= Delay to generate the sum

t(xi, 5:) = t(yi, 85) = t(ci, 84)
= t(XOR)

= Delay to generate carry-out

t(zi, cit1) = t(Yis cix1) = t(cis Cit1)
= t(AND) + t(OR)

= \Worst-case delay
tmax = Imax (t(Si),t(Ci_|_1))
= max (¢(XOR),t(AND) + ¢t(OR))
« If all gates had equal delays

tmax = t(ciy1) = 2 Gate Delays

CS-173, © EPFL, Spring 2025

\r\/\rtj

Ci+1

29

(7]
w
—
o
=
<
>
]

Full Adder-Subtractor

Input-to-Output Delay, Assuming All Inputs are Available at timet=0

= Delay to generate the sum
t(ib‘i, 3@') = t(Ci, Si) = t(XOR) X;

t(yi, si) = t(op, s;) = 2¢(XOR) op
= Delay to generate carry-out Vi j’
t(ilj'i, C@'_|_1) = t(Ci, Ci—l—l) = t(AND) + t(OR)

t(yi, C@'_|_1) == t(op, Ci_|_1) == t(XOR) + t(AND) + t(OR) |G
= \Worst-case delay

tmax = max (t(si)? t(c’é-l-l))

= max (2t(XOR), ¢(XOR) + t(AND) + ¢t(OR))

kHUkHU

« If all gates had equal delays:

tmax = t(cir1) = 3 Gate Delays

CS-173, © EPFL, Spring 2025

Ci+1

30

Basic Ripple-Carry Adder-Subtractor

= \What is the worst-case delay to find the sum/difference using
a basic ripple carry adder-subtractor?
« Assume the inputs X, Y, and op are available (no waiting to start)
« Assume all gates have the same delay

= Note: Worst-case delay is commonly referred to as critical path delay (CPD)

Yn—1 (51 Yo >

Ny Ny L

» A: (2n + 1) gate delays xn_l? x? xo?
Cn=— FA |=—Cp-1 -+ C2=— FA S FA |=—op

| | |

Sn—1 S1 S0 31

CS-173, © EPFL, Spring 2025

= Solution:

« The worst-case delay is on
the path from the op input to
the last carry-out output

tmax — tmax(cl)
+ (n — 2)75(0,;, Cf,;_|_1)
+ tmax(t(cn—la Cn)a t(cn—la Sn—l))

tmax = t(XOR) + t(AND) + t(OR)
+ (n —2) (t(AND) + t(OR))
+ t(AND) 4 t(OR)

CS-173, © EPFL, Spring 2025

FA -— Cn_]_ e

Basic Ripple-Carry Adder/Subtractor

Co =—j

op
N Yo
\L—-/ \L_./
C1
FA |=— FA |=——op

|

If all gates have equal delays:
tmax =3+ (n—2) - 242
= (2n 4+ 1) Gate Delays

32

RCA Performance Issues

= \With the increasing number of bits n, the ripple-carry adder delay
increases, and the computation becomes prohibitively slow

» \What can be done to make the adder faster?

= A variety of faster implementations exist
. : : Digital Arithmetic
« Switched carry-ripple adder, carry-skip adder, A =
carry-lookahead adder, prefix-adder, conditional-sum adders, ... " L
« All but the carry-select adder are out of scope for CS-173

CS-173, © EPFL, Spring 2025

33

Carry-Select Adder

= [dea: Cut the long carry propagation chain in half to save time

39n|—1yln—1 :Enl_g 3{,1,_2 $|1 y|1 il?lo ylo

. || 2-bit RCA| |2-bit RCA] | Loy

cn=a- FA [<—{ FA |— ~— FA |=—{ FA |~ =0

Sn—1 Sn—_9 S1 S0
\ J \ _J
~ "
t(n-bit RCA) t(n-bit RCA)
2 2

CS-173, © EPFL, Spring 2025

34

Carry-Select Adder, Contd.

Ln—1y s LL yn—la---ay% 37%—17---»370 y%—lv' » YO
Cp 2_bit RCA ’ x 2_bit RCA ¢
Sn_l,...,S% S%_l,...,SO
\— 7 - 7
~ ~
t(n-bit RCA) t(n-bit RCA)

2

2

= How can we compute the carry-in for the second half?
« Compute twice: once for carry-in = 0, once for carry-in = 1
« Compute in parallel (double the gates) to save time

« Once carry-in is known, use it to select the corresponding sum and carry-out

CS-173, © EPFL, Spring 2025 35

Carry-Select Adder

Block Diagram

Tp—1se0 T2 Yn—lyeny Y2 = Adders operating in parallel:
~ > ~~ significant time savings at

W) additional gate cost of approx.
the size of one %-bit RCA

-

A

Cout 2-bit RCA Cin

S

Cout 5-bit RCA Cin

A

$%—1a---;5€0 %—17"'7y0
S
T L JL
N J L Cn
C% \ / C% 2 Cout %—blt RCA Cin [—— CO
/ S
o Sn_l,...,S% 8%_1,...,80 »

__ t(n-bit RCA)
CS-17/3, © EPFL, Spring 2025 2 36

CS-173, © EPFL, Spring 2025

37

QQ‘X‘B_LBLD 101,
6\5 (}_&Q-&.Q]’IZIII;EI],QD.Z

& &’& B I00g,,
‘\) ~
6\7 '\?’\) &9 0@63"31‘“]‘“1”010

N > 20,
I '\? '\? «9\’&‘
N o F S
o = SO
~
5.3 %%
A e, 2
A e a
o 9083
PRt
Shifti 2 2% %
| Ing o \’é o %,
: % 2 % % ?0??00 @“&Q
Barrel Shifters 2 Op, - O, S
0? 0?0 Y0tprprgrott®
z 1
0?0? Y0tgrgroTett
?

Y011 grorot

CS-173, © EPFL, Spring 2025 38

Barrel Shifter

= A barrel shifter is a combinational logic circuit with n data inputs,
n data outputs, and a set of control inputs that specity how to
shift the data between the input and the output

= A barrel shifter inside a processor can typically specity
« direction of shift (left, right)
« type of shift (logical, arithmetic, circular/rotation)
« amount of shift (typically 0 to n — 1 bits)

= Implemented as a sequence of multiplexers (MUX), each shifting
their input by twice as many positions as the previous MUX

Shift Right

By Up to One Position

= Logical shift resets the leading bit of the output: 1 =0
= Arithmetic (sign-preserving) shift: I = 7 = Most-significant bit

I x7 g T X4 3 9 1 0
| I I | I I I
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
\ MUX SL \ MULS/L \ MULS/L \ MULS/L \ MUE/L \ MULS/L \ MUE,/L MUX's/— s
=7 <6 <5 24 <3) 21 <0
» Truth table so | zrz6252423202120
O | x7x6x5Lx4X3T2X1T0
lxrxeX50403T221

CS-173, © EPFL, Spring 2025

40

Shift Right

By Up to Three Positions

X7 Le

I
1 0 1 0 1 0 1 0 0
\ Mqijz_ \ MUXSZ_ MUX s \ MUXSZ_ quﬁz‘

H

\ L 0 { \ L o0
MUX s MULS/L

7 <6 zZ5 24 Z3

= Truth table

» Select signals encode the number
of positions to shift by
(e.g., ¢S, = (10), shifts by two places)

CS-173, © EPFL, Spring 2025

) 1
51 |S0 RTZGe5%42342241 40
0 |0 |Z7T6X5T423X2L1X0
0 |1 lxrx6X504T3T221
1 0 ll:B7$6£U5£E4$3ZL'2
1 1 lll:}:7x6x5x4$3

41

Shift Right

By Up to Three Positions, Contd.

= Nothing new, just a somewhat more compact drawing

[2 T7 T 5 X4 3 T2 1 o
| s S s S s S s 35 s B8 s S s 2
1 0 I 0 0 I 0 I 0 I 0 I 0 I 0
MUX MUX MUX MUX MUX MUX MUX MUX [S0
! : e .
Y * I ¥ * 1 * Y $ I ‘ Y * ¥
1 0 1 0 T 0 1 0 1 0 T 0 1 0 1 0
MUX MUX MUX MUX MUX ‘ MUX MUX MUX [S1
z7 26 Z5 Z4 Z3 z2 21 20

CS-173, © EPFL, Spring 2025

42

Shift Right

By Up to Seven Positions

= Three levels of multiplexing

[—o T L6 T L4 T3 X2 I Lo
N Sl T SRR el e e
MUX MUX MUX MUX MUX MUX MUX Mux [S0
_; + I L4 + I + L i * I * Y * Y
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
MUX MUX MUX MUX MUX MUX MUX MUX [S
l : : 1
L
; * ; L) * L ‘ L l l L J
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
MUX MUX MUX MUX MUX MUX MUX MUX [52
z7 26 Z5 Z4 Z3 z2 21 <0

CS-173, © EPFL, Spring 2025

43

dir = 0 : Right
dir =1 : Left

Bidirectional Shifter | Z 0+ Togical shift right or shift left

By Up to Seven Positions | = x7 : Arithmetic shift right

L7 Te Iy T4 T3 i) L1 i
L
Y) Y l L J l) l Y l) |)
10 10 10 10 10 10 10 1 0 .
MUX MUX MUX MUX MUX MUX MUX MUX [dir
Y Y Y Y Y Y Y Y
in7 ’in6 ing, in4 ing i?’bg inl ino
. . ere <+—350
] —»|1 Shift Right By Up to Seven Positions S
-39
out- outg outs ouly outs outs outy ouly
|
Y Y J l | | l | l L J l L J L J Y
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 .
MUX MUX MUX MUX ‘ MUX MUX MUX MUX [dir
CS-173, © EPFL, Spring 2025 l l L l l l l l 44
z7 Z6 Z5 Z4 Z3 z2 <1 20

dir = 0 : Right

Bidirectional Shifter O Tomieal shift xieht or shift 1ot

By Up to Seven Positions, Contd. | = x7 : Arithmetic shift right

= Truth table (incomplete, only a few example cases are shown):

dir S22 S1 So mn out z
_T 0 1 0 T7xexs5x4T3T2x120 lx706T524T370 llxrx6x5042320
0l 1 0 1 Z7ZT6T5T4T3T2T1%0 Ulllxrrexs Uillzrxezs
0J 1 1 1 T7TeT5T4T3T2X1X0 LT 2 LI 2

\ Origihal order / \ Origihal order /

1 0 0 ZoT1T2T3T4T5T6X7 lllxorixc973 Ta3Tox1xollll
T

T

]
0 1 T ToT1T2T3T4T5T6T7 lllxogr1100374 TaX3Tox1Lolll
1 1 1T ZoT1T2X3T4T5T6X7 [z xolllllll

\ \ Swapped order

Swapped order

CS-173, © EPFL, Spring 2025 45

CS-173, © EPFL, Spring 2025

46

Literature

DIGITAL LOGIC

with Verilog Design

= Chapter 3: Number representation
and arithmetic circuits
= 3.2.1,3.22,333,3356

CS-173, © EPFL, Spring 2025

Chapter 8: Combinational arithmetic elements
= 8.1.1-8.1.3
= 82

47

